On Software Fault Prediction by Mining Software Complexity Data with Dynamically Filtered Training Sets
نویسنده
چکیده
Software fault prediction methods are very appropriate for improving the software reliability. With the creation of large empirical databases of software projects, as a result of stimulated research on estimation models, metrics and methods for measuring and improving processes and products, intelligent mining of these datasets can largely add to the improvement of software reliability. In the paper we present a study on using decision tree classifiers for predicting software faults. A new training set filtering method is presented that should improve the classification performance when mining the software complexity measures data. The classification improvement should be achieved by removing the identified outliers from a training set. We argue that a classifier trained by a filtered dataset captures a more general knowledge model and should therefore perform better also on unseen cases. The proposed method is applied on a real-world software reliability analysis dataset and the obtained results are discussed. Key-Words: software fault prediction, classification, search-based software engineering, filtering training set, complexity metrics
منابع مشابه
Improved Mining of Software Complexity Data on Evolutionary Filtered Training Sets
With the evolution of information technology and software systems, software reliability has become one of the most important topics of software engineering. As the dependency of society on software systems increase, so increases also the importance of efficient software fault prediction. In this paper we present a new approach to improving the classification of faulty software modules. The prop...
متن کاملEvaluation of Classifiers in Software Fault-Proneness Prediction
Reliability of software counts on its fault-prone modules. This means that the less software consists of fault-prone units the more we may trust it. Therefore, if we are able to predict the number of fault-prone modules of software, it will be possible to judge the software reliability. In predicting software fault-prone modules, one of the contributing features is software metric by which one ...
متن کاملA Novel Approach for Identifying Software Fault Prediction in mining
Identifying and locating defects in software projects is a difficult work. In particular, when project sizes grow, this task becomes expensive. The aim of this research is to establish a method for identifying software defects using data mining applications methods. In this work we used Synthetic data Program (SD).We used mining methods to construct a two step model that predicts potentially de...
متن کاملSoftware Fault Prediction: A Systematic Mapping Study
Context: Software fault prediction has been an important research topic in the software engineering field for more than 30 years. Software defect prediction models are commonly used to detect faulty software modules based on software metrics collected during the software development process. Objective: Data mining techniques and machine learning studies in the fault prediction software context ...
متن کاملEvaluation of Classifiers in Software Fault-Proneness Prediction
Reliability of a software counts on its fault-prone modules. This means that the less the software consists of fault-prone units, the more we may trust it. Therefore, if we are able to predict the number of fault-prone modules of a software, it will be possible to judge its reliability. In predicting the software fault-prone modules, one of the contributing features is software metric, by which...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009